Структуры титановых сплавов

Титан подобно железу является полиморфным металлом и имеет фазовое превращение при температуре 882°С. Ниже этой температуры устойчива гексагональная плотноупакованная кристаллическая решетка α-титана, а выше — объемно центрированная кубическая (о. ц. к.) решетка β-титана.

Титан упрочняется легированием α- и β-стабилизирующими элементами, а также термической обработкой двухфазных (α+β)-сплавов. К элементам, стабилизирующим α-фазу титана, относятся алюминий, в меньшей степени олово и цирконий. α-стабилизаторы упрочняют титан, образуя твердый раствор с α-модификацией титана.

За последние годы было установлено, что, кроме алюминия, существуют и другие металлы, стабилизирующие α-модификацию титана, которые могут представлять интерес в качестве легирующих добавок к промышленным титановым сплавам. К таким металлам относятся галлий, индий, сурьма, висмут. Особый интерес представляет галлий для жаропрочных титановых сплавов благодаря высокой растворимости в α — титане. Как известно повышение жаропрочности сплавов системы Ti — Al ограничено пределом 7 — 8% вследствие образования хрупкой фазы. Добавкой галлия можно дополнительно повысить жаропрочность предельно легированных алюминием сплавов без образования α2-фазы.

Алюминий практически применяется почти во всех промышленных сплавах, так как является наиболее эффективным упрочнителем, улучшая прочностные и жаропрочные свойства титана. В последнее время наряду с алюминием в качестве легирующих элементов применяют цирконий, олово и ванадий. Пример: титановые прутки ВТ6 (Grade 5, Gr.5, Gr5), титановые листы ВТ6 (Grade 5, Gr.5, Gr5), поставляемые ООО «Вариант» для медицинских имплантатов, титановые прутки и трубы марки Grade 9 (Gr.9, Gr9), поставляемые ООО «Вариант» по ASTM B348, ASTM B338.

Цирконий положительно влияет на свойства сплавов при повышенных температурах, образует с титаном непрерывный ряд твердых растворов на основе α — титана и не участвует в упорядочении твердого раствора. Пример: титановые трубы ПТ1-М (ПТ1М), ПТ7-М (ПТ7М).

Олово, особенно в сочетании с алюминием и цирконием, повышает жаропрочные свойства сплавов, но в отличие от циркония образует в сплаве упорядоченную фазу.

Преимущество титановых сплавов с α-структурой — в высокой термической стабильности, хорошей свариваемости и высоком сопротивлении окислению. Однако сплавы типа α чувствительны к водородной хрупкости ( вследствие малой растворимости водорода в α-титане) и не поддаются упрочнению термической обработкой. Высокая прочность, полученная за счет легирования, сопровождается низкой технологической пластичностью этих сплавов, что вызывает ряд трудностей в промышленном производстве.

Для повышения прочности, жаропрочности и технологической пластичности титановых сплавов типа α в качестве легирующих элементов наряду с α-стабилизаторами применяются элементы, стабилизирующие β-фазу.

Элементы из группы β-стабилизаторов упрочняют титан, образуя α- и β-твердые растворы.

В зависимости от содержания указанных элементов можно получить сплавы с α+β- и β-структурой.

Таким образом, по структуре титановые сплавы условно делятся на три группы: сплавы с α-, (α+β)- и β-структурой.

В структуре каждой группы могут присутствовать интерметаллидные фазы.

Преимущество двухфазных (α+β)-сплавов — способность упрочняться термической обработкой (закалкой и старением), что позволяет получить существенный выигрыш в прочности и жаропрочности.

  • Отправить
    Запинить